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Abstract 

In this paper, the method for solving Volterra integral equations of the first kind with weakly 

singular kernels using the Hermite polynomials is presented. The procedure resulted in the 

construction of systems of algebraic equations, solving these systems of algebraic equations an 

approximate solution    ̅( )  is obtained numerically; Illustrative examples are included to 

demonstrate the simplicity and applicability of the method. Once the approximate solution 

coincides with the exact solution for any particular value of  , further evaluations can only give 

an approximate solution. The volume of work involve in this method is much easier than most of 

the existing methods contained in the literature. 

Keywords: Galerkin’s method, Hermite polynomials, kernels, Volterra integral equations, 

kernels. 

 

1.0 Introduction 

It’s well known that linear and nonlinear volterra integrals are mathematical models considered 

by many evolutionary problems which arise in many scientific fields such as the population 

dynamics, spread of epidemics and semi-conductor devices. Its applications are found in the 

areas of ruin theory and in the study of the risk of insolvency in actuarial science. The growing 

interest in this equation arising in various fields such as Physics, Engineering and Economics in 

recent time’s motivated mathematicians to develop reliable methods for solving it. Approximate 

methods for solving numerically various classes of Volterra integral equations (VIEs) are very 

rare. Several methods have been proposed for the numerical solutions of these equations. Prior to 

the development of finite element method, there existed an approximation technique for solving 

differential and integral equations called the Weighted Residuals Methods (WRMs). The 

Galerkin’s method considered in this work is among the earliest of these methods. 

 

Numerical solutions of VIEs have been studied by many scientist using different approaches and 

methods. The Numerical Solutions of VIE using Laguerre Polynomials was discussed in [2], the 

Bernstein polynomials was used in the approximation techniques for VIE in [3, 5, 7]. Taylor 

series polynomials were used for the numerical solution of VIE in [4, 5, 8] among other methods. 

Since the piecewise polynomials are differentiable and integrable, the Hermite polynomials is 
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proposed for solving integral equations of the VIE numerically. The method transforms the 

integral equation to a linear system of algebraic equations which are then solved by direct or 

iterative methods using the matrices of the linear systems of algebraic equations involve. In most 

of these methods the matrices involve is always very expensive to obtain computationally. 

Therefore the introduction of the Galerkin’s weighted residual method transforms the VIE to 

linear systems of algebraic equations whose matrix is very simple to handle using Maple 

Software and the accuracy of these methods depends on the choice of the trial function.   

2.0 Hermite Polynomials  
The general form of the Hermite polynomials of n

th
 degree is defined by 

  ( )  (  )          

   
                                         ( ) 

Below are some of the first few Hermite polynomials obtained from recurrence relation (1)  

  ( )      ( )          ( )          ( )           
  ( )                    ( )                  

  ( )                       

3.0 Methodology 

 An integral equation of the form;  

∫  (   ) ( )  
 

  

  ( )                                                                  ( ) 

where  (   ) is called the integral kernel (nucleus),  ( ) is a specified real valued continuously 

differentiable function defined on      , and  ( ) is the function to be solved for is called a 

Volterra integral equation of the first kind where the unknown function  ( ) only appears inside 

the integral sign. In this paper,  ( ) is strictly a polynomial of degree    , satisfying  (  )  
 .   

In this case, we shall assume an approximate solution given by 

 ̅( )   ( )  ∑  

 

   

  ( )                                                                                     ( ) 

where   ( ) is a Hermite polynomials of degree   defined in (1),   represent the number of 

Hermite polynomials and    s are the unknown constant parameters we need to determine.  Now 

substituting (3) in (2) to obtain;  

∑  

 

   

∫  (   )  ( )  
 

  

  ( )                                                     ( ) 

In order to obtain the Galerkin’s equations, both sides of (4) is multiplied by   ( )  and 

integrating the result with respect to   over the interval       to obtain 



 International Journal of Computer Science and Mathematical Theory (IJCSMT)  

E-ISSN 2545-5699 P-ISSN 2695-1924 Vol 8. No.2 2022 www.iiardjournals.org 

 

 
 

 
 

 IIARD – International Institute of Academic Research and Development 
 

Page 52 

∑  

 

   

∫ (∫  (   )  ( )  
 

  

)  ( )  
 

 

 ∫  ( )  ( )  
 

 

            ( ) 

From equation (5) for each             , (   ), (   ) linear equations with (   ) 

unknowns are obtained and can be put in matrix notation as; 

∑  

 

   

                                                                                             ( ) 

where      ∫ [∫  (   )  ( )  
 

  
]   ( )  

 

 
               and    ∫  ( )  ( )  

 

 
 

              

4.0 Numerical Illustrations  

In this section, we illustrate the above mentioned method with the help of the following two 

numerical examples of the first kind with regular kernels and weakly singular kernels, available 

in some existing literature [2, 10]. The computations, associated with the examples, are 

performed using the Maple 18 Software. 

Example 1  

Consider an Abel’s integral equation (VIE of first kind with weakly singular kernels) of the form 

[2] 

∫
 

√(   )
 ( )  

 

 

 
 

   
√ (             )          

The exact solution  ( )          using the method illustrated in section (3.0), solving the 

linear system with         we obtain the approximate solutions for each value   and their 

corresponding absolute errors as shown in Tables 1 and 2 respectively. 

Example 2 

Consider the Volterra integral equation of the first kind [10] given by, 

∫       ( )  
 

 

              

Which has the exact solution   ( )     , using the method illustrated in section (3.0), solving 

the linear system with        , we obtain the approximate solution for each value   and their 

corresponding absolute errors as shown in Tables 3 and 4 respectively. 
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Table 1: Approximate solution for problem 1 for each value   

   ,   ̅( )                   

   ,   ̅( )                             
   ,   ̅( )               (Exact) 

   ,   ̅( )                         

   ,   ̅( )                                                        
    

 

 

Table 2: Approximate solution for problem 1 for each 

value   
    Exact  ( ) Approx.   ̅( ) Absolute Error 

1 0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.0000000 

1.2000000 

1.4000000 

1.6000000 

1.8000000 

1.0000000 

1.0000000 

0.956136 

0.923812 

0.891488 

0.859164 

0.826840 

0.0115400 

0.0118640 

0.0198120 

0.0354880 

0.0128360 

0.1731600 

2 0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.0000000 

0.9680000 

0.9040000 

0.8560000 

0.8720000 

1.0000000 

1.0373000 

0.9519848 

0.8974392 

0.8736632 

0.8806568 

0.9184200 

0.0373000 

0.0160152 

0.0065608 

0.0176632 

0.0086568 

0.0815800 

3 0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.0000000 

0.9680000 

0.9040000 

0.8560000 

0.8720000 

1.0000000 

1.0000000 

0.9680000 

0.9040000 

0.8560000 

0.8720000 

1.0000000 

0.0000000 

0.0000000 

0.0000000 

0.0000000 

0.0000000 

0.0000000 

4 0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.0000000 

0.9680000 

0.9040000 

0.8560000 

0.8720000 

1.0000000 

1.0000000 

0.9680000 

0.9040000 

0.8560000 

0.8720000 

1.0000000 

0.0000000 

0.0000000 

0.0000000 

0.0000000 

0.0000000 

0.0000000 

5 0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.0000000 

0.9680000 

0.9040000 

0.8560000 

0.8720000 

1.0000000 

1.0000000 

0.9680000 

0.9040000 

0.8560000 

0.8720000 

1.0000000 

0.0000000 

0.0000000 

0.0000000 

0.0000000 

0.0000000 

0.0000000 
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Table 3: Approximate solution for problem 2 for various values of   

   ,   ̅( )              (Exact) 

   ,   ̅( )                         
   ,   ̅( )                                      

   ,   ̅( )                                                      

   ,   ̅( )                                                       
              

  

Table 4: Approximate solution for problem 2 for various 

values of   
    Exact  ( ) Approx.   ̅( ) Absolute Error 

1 0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.0000000 

1.2000000 

1.4000000 

1.6000000 

1.8000000 

2.0000000 

1.0000000 

1.2000000 

1.4000000 

1.6000000 

1.8000000 

2.0000000 

0.0000000 

0.0000000 

0.0000000 

0.0000000 

0.0000000 

0.0000000 

2 0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.0000000 

1.2000000 

1.4000000 

1.6000000 

1.8000000 

2.0000000 

1.0000000 

1.2000000 

1.4000000 

1.6000000 

1.8000000 

2.0000000 

0.0000000 

0.0000000 

0.0000000 

0.0000000 

0.0000000 

0.0000000 

3 0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.0000000 

1.2000000 

1.4000000 

1.6000000 

1.8000000 

2.0000000 

1.0000000 

1.2000000 

1.4000000 

1.6000000 

1.8000000 

2.0000000 

0.0000000 

0.0000000 

0.0000000 

0.0000000 

0.0000000 

0.0000000 

4 0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.0000000 

1.2000000 

1.4000000 

1.6000000 

1.8000000 

2.0000000 

1.0000000 

1.2000000 

1.4000000 

1.6000000 

1.8000000 

2.0000000 

0.0000000 

0.0000000 

0.0000000 

0.0000000 

0.0000000 

0.0000000 

5 0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.0000000 

1.2000000 

1.4000000 

1.6000000 

1.8000000 

2.0000000 

1.0000000 

1.2000000 

1.4000000 

1.6000000 

1.8000000 

2.0000000 

0.0000000 

0.0000000 

0.0000000 

0.0000000 

0.0000000 

0.0000000 
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5.0 Conclusion 

In this paper, Volterra integral equations of the first kind are solved using residual method 

alongside Hermite polynomial basis function. In this method, we obtain the exact solution at one 

particular value of   and all the remaining values of   , gives only an approximate solution. 

Thus, the numerical results obtained from the examples demonstrated the validity and efficiency 

of the proposed method. The authors’ conclude that the approximation solutions usually coincide 

with the exact solutions after the use of some few terms of the polynomial basis function. 
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